
Deep Learning Programming 16.05.2018

Backpropagation in Neural Networks

Have a look at the simple neural network presented in the lecture slides.

Using a Single Training Example Per Step

Throughout this example, D is the dimension of the input space, H the dimension of the
hidden layer and C the number of different classes. The seemingly unnecessary notational
detail (e.g. the ϕ activation functions) will come in handy in the back propagation.

Let x ∈ RD, y ∈ {0, 1}C where
∑
i
yi = 1 (one-hot coding).

Forward Pass:

Let W (1) ∈ RH×D, b(1) ∈ RH .

By matrix concatenation x̃ =

[
1
x

]
∈ RD+1 and W̃ (1) =

[
b(1)W (1)

]
∈ RH×(D+1)

we can simplify the network input of the hidden layer:

Z(2) = W (1)x+ b(1)

to an equivalent representation:
Z(2) = W̃ (1)x̃

The activation is defined as

A(2) = ϕ(2)
(
Z(2)

) [
= max(0, Z(2)) in the example

]
Again, to simplify the netork input calculation for the output layer, concatenate

Ã(2) =

[
1

A(2)

]
W̃ (2) =

[
b(2) W (2)

]
now the network input of the output layer can be written as

Z(3) = W̃ (2)Ã(2) ∈ RC

and the activation of the output layer is:

A(3) = ϕ(3)
(
Z(3)

) [
= id in the example

]

This is the prediction of the model given families of weight matrices W and biases b:

hW,b(x) =
1∑C

i=1 e
A3

i

eA
(3)

=
1∑C

i=1 e
Z3
i

eZ
(3) ∈ RC



Deep Learning Programming 16.05.2018

Backward Pass:

The general crossentropy loss

J(W, b) = − 1
m

m∑
i=1

C∑
k=1

1{y(i) = k}log hW,b(x
(i)) +

λ

2

L∑
l=1

‖W (l)‖2

can be simplified as we have only one training example and y is a one-hot vector:

J(W, b) = −
C∑

k=1

yk log hW,b(x) +
λ

2

L∑
l=1

‖W (l)‖2

We now want to change the weights (which include the bias) in order to minimize J .

Notice that for our fully connected network W̃
(l)
i,j is the weight connecting the j-th output

component of layer l (which is A
(l)
j ) to the i-th neuron of layer l + 1.

By the chain rule, we get:

∂J

∂W̃
(l)
i,j

=
∂J

∂A
(l+1)
j

∂A
(l+1)
j

∂Z
(l+1)
j

∂Z
(l+1)
j

∂W̃
(l)
i,j

For further clarification, let’s have a look at the factors in this product:

∂A
(l+1)
j

∂Z
(l+1)
j

= ϕ′(l+1)(Z
(l+1)
j ) is the derivative of the activation function

∂Z
(l+1)
j

∂W̃
(l)
i,j

= A
(l)
i is the output of the “previous” neuron (linearity of matrix mult.)

So far this formulation is independent of l. The gradient of the error function can only
be evaluated directly at the output layer:

∂J

∂Z
(l+1)
j

= Z
(l+1)
j − yj

[
where l = 3 in the example

]
For the lower layers, this error signal propagate backwards (thus the name) as follows,
where η is the learning rate:

W̃
(l)
i,j ← −η∆

(l+1)
j A

(l)
i

[
+ regularization

]
where

∆
(l)
j =

ϕ
′(Z(l)

j

)
(Aj − yj) for the output layer

ϕ′
(
Z

(l)
j

)∑
k

∆
(l+1)
k W̃

(l)
j,k else


