Deep Learning Programming 16.05.2018

Backpropagation in Neural Networks

Have a look at the simple neural network presented in the lecture slides.

Using a Single Training Example Per Step

Throughout this example, D is the dimension of the input space, H the dimension of the
hidden layer and C the number of different classes. The seemingly unnecessary notational
detail (e.g. the ¢ activation functions) will come in handy in the back propagation.

Let € R, y € {0,1}¢ where 3" 5; = 1 (one-hot coding).
i

Forward Pass:

Let W) e REXD p(1) ¢ RH

By matrix concatenation ¥ = B] € RO+ and W) = [b(l) W(l)] e RE*(D+1)

we can simplify the network input of the hidden layer:
7@ — w4 pM)

to an equivalent representation:

72 —whz
The activation is defined as

A =, (Z(Q)) { = max(0, Z?) in the example}

Again, to simplify the netork input calculation for the output layer, concatenate

i@ [AH W) = [ W]

now the network input of the output layer can be written as

7B — w2 A2 c RrC

and the activation of the output layer is:

AB) = cp(?’) (Z(3)) [ = id in the example}

This is the prediction of the model given families of weight matrices W and biases b:
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Backward Pass:

The general crossentropy loss

m C
— =533 1y = kHog o ZHVV”II2

k=1
can be simplified as we have only one training example and y is a one—hot vector:

~.
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J(W,b) Zyk log hwy(x Z I ®)2

We now want to change the weights (which include the bias) in order to minimize J.

w® s

Notice that for our fully connected network W is the weight connecting the j-th output

component of layer [ (which is Ag- )) to the z-th neuron of layer [ + 1.
By the chain rule, we get:

o0 aJ oAV azl"Y

w9 AU+ o, 0+1) 7 (D)
ow;i  0A; T 0Z; oW,

For further clarification, let’s have a look at the factors in this product:

P A(-l+1)
jl 5 = go’(l+1)(Z(.l+1)) is the derivative of the activation function
0z ’
P Z(l+1)
S o= AZ(-l) is the output of the “previous” neuron (linearity of matrix mult.)
oW,
7]

So far this formulation is independent of . The gradient of the error function can only
be evaluated directly at the output layer:

oJ Z](.l“)

570D —Yj [ where [ = 3 in the example]
J

For the lower layers, this error signal propagate backwards (thus the name) as follows,
where 7 is the learning rate:

W() = UA(ZH)AZ(D [ + regularization]
where
0 ‘P/(Z]('l)) (45 —yj) for the output layer
AY =

l l ()
J Lp'(ZJ(. )) zk: AECH) Wj(lz else



