
Introduction to Applied Scientific Computing using

MATLAB

Mohsen Jenadeleh

In this lecture, slides from MIT, Rutgers and Waterloo University are used to form the lecture slides

Matrix Algebra

• dot product

• matrix-vector multiplication

• matrix-matrix multiplication

• matrix inverse

• solving linear systems

• least-squares solutions

• determinant, rank, condition number

• vector & matrix norms

• iterative solutions of linear systems

• examples

• electric circuits

• temperature distributions

Operators and Expressions

operation element-wise matrix-wise

addition + +

subtraction - -

multiplication .* *

division ./ /

left division .\ \

exponentiation .^ ^

transpose w/o complex conjugation .'

transpose with complex conjugation '

>> help /

>> help precedence
used in matrix

algebra operations

>> A = [1 2; 3 4]

A =

1 2

3 4

>> [A, A.^2; A^2, A*A] % form sub-blocks

ans =

1 2 1 4

3 4 9 16

7 10 7 10 % note A^2 = A*A

15 22 15 22

>> B = 10.^A;

>> [B, log10(B)]

ans =

10 100 1 2

1000 10000 3 4

math

notations

MATLAB

notation

dot product

a, b must have the same

dimension

The dot product is the basic operation in

matrix-vector and matrix-matrix multiplications

math

notations

MATLAB

notation

dot product

for complex-valued vectors
complex-conjugate transpose,

or, hermitian conjugate of a

for real-valued vectors, the

operations ' and .'

are equivalent

>> a = [1; 2; -3]; b = [4; -5; 2];

>> a'*b

ans =

-12

>> dot(a,b) % built-in function

ans = % same as sum(a.*b)

-12

matrix-vector multiplication

combine three dot product

operations into a single

matrix-vector multiplication

matrix-vector multiplication

combine three dot product

operations into a single

matrix-vector multiplication

A x = b

matrix-matrix multiplication

combine three matrix-vector

multiplications into a single

matrix-matrix multiplication

>> A = [4 1 2; 1 -1 1; 2 1 1]

A =

4 1 2

1 -1 1

2 1 1

>> B = [5 -1 -3; -4 3 1; -7 2 6]

B =

5 -1 -3

-4 3 1

-7 2 6

>> C = A*B

C =

2 3 1

2 -2 2

-1 3 1

C(i,j) is the dot product of i-th row of A with j-th column of B

note:

A*B  B*A

Rule of thumb:

(NxK)x(KxM) --> NxM

A is NxK

B is KxM

then, A*B is NxM

vector-vector multiplication

(1x3)x(3x1) --> 1x1 = scalar

row * column = scalar

(3x1)x(1x3) --> 3x3

column * row = matrix

vector-vector multiplication

>> [1, 2, 3] * [2 -3 -1]'

ans =

-7

>> [1, 2, 3]' * [2 -3 -1]

ans =

2 -3 -1

4 -6 -2

6 -9 -3

row x column

= scalar

column x row

= matrix

solving linear systems A x = b

Linear equations have a very large number of applications

in engineering, science, social sciences, and economics

Linear Programming – Management Science

Computer Aided Design – aerodynamics of cars, planes

Signal Processing, Communications, Control, Radar,

Sonar, Electromagnetics, Oil Exploration,

Computer Vision, Pattern & Face Recognition

Chip Design – millions of transistors on a chip

Economic Models, Finance, Statistical Models,

Data Mining, Social Models, Financial Engineering

Markov Models – Speech, Biology, Google Pagerank

Scientific Computing – solving very large problems

the only practical

way to solve very

large systems is

iteratively

solving linear systems

always use the backslash operator to

solve a linear system, instead of inv(A)

matrix

inverse

solving linear systems (using backslash)

>> A = [2 1 0; 1 5 -1; 1 -2 4];

>> b = [4 8 9]';

>> x = A\b % solution of A*x = b

x = % x = A^-1 * b

1 % x = inv(A) * b

2

3

>> norm(A*x-b) % test - should be zero

ans = % or, of the order of eps

0

solving linear systems (using inv)

>> A = [2 1 0; 1 5 -1; 1 -2 4];

>> b = [4 8 9]';

>> inv(A) % same as A^(-1)

ans =

0.5806 -0.1290 -0.0323

-0.1613 0.2581 0.0645

-0.2258 0.1613 0.2903

>> x = inv(A) * b % but prefer backslash

x = % same as x = A^-1 * b

1.0000

2.0000

3.0000

>> norm(A*x-b)

ans =

1.8310e-015

>> inv(sym(A))

ans =

[18/31, -4/31, -1/31]

[-5/31, 8/31, 2/31]

[-7/31, 5/31, 9/31]

solving linear systems – back-slash and forward-slash

A of size NxN and invertible

X of size NxK

B of size NxK

AX = B --> X = A\B = inv(A)*B

A of size NxN and invertible

X of size KxN

B of size KxN

XA = B --> X = B/A = B*inv(A)

equivalent

equivalent

A X = B =AX B

solving linear systems – least-squares solutions

A of size NxM

x of size Mx1 column

b of size Nx1 column

x = A\b
x=A\b is a solution of Ax=b

in a least-squares sense,

i.e., x minimizes the norm squared

of the error e = b – A*x:

(b-Ax)'*(b-Ax) = min

x may or may not be unique

depending on whether the linear

system Ax=b is over-determined,

under-determined, or whether A has

full rank or not

>> help \

>> help pinv

x = pinv(A)*b;

pseudo-inverse

least-squares solutions - summary

A = NxM matrix A' = MxN matrix

x = Mx1 column A'*A = MxM matrix

b = Nx1 column A'*b = Mx1 column

Assuming full rank for A, we have the following cases:

1. N>M, overdetermined case, (most common in practice)

x = A\b = unique least-squares solution, same as

x = pinv(A)*b, and

x = (A'*A)^(-1) * (A'*b)

2. N<M, underdetermined case, (there are many solutions)

x=A\b, x=pinv(A)*b, are two possible solutions

3. N=M, square invertible case, x is unique

x = A\b is equivalent to x = A^(-1)*b

x = A\b is numerically

the most accurate method

Fundamental Theorem of

Linear Algebra – what is it?

least-squares solutions - example

% overdetermined

% full-rank example

A = [1 2; 3 4; 5 6]

b = [4, 3, 8]';

x = A\b

% x = pinv(A)*b

% x = (A'*A)\(A'*b)

x =

-1

2

least-squares solutions - example

inverse exists because A was

assumed to have full rank

minimized value of J

achieved at x = x_opt

least-squares solutions - example

A = [1 2; 3 4; 5 6]

b = [4, 3, 8]';

x_opt = (A'*A)\(A'*b)

J_min = b'*b - ...

b'*A*inv(A'*A)*A'*b

x_opt =

-1

2

J_min =

6

least-squares solutions - example

least-squares solutions - example

% we can also minimize J with fminsearch,

% i.e., the multivariable version of fminbnd

J = @(x) 35*(x(1)+1).^2 +...

88*(x(1)+1).*(x(2)-2)+...

56*(x(2)-2).^2 + 6;

x0 = [0,0]'; % arbitrary initial search point

[xmin,Jmin] = fminsearch(J,x0)

% xmin = % Jmin = 6

% -1.0000

% 2.0000

The inverse inv(A) of an NxN square

matrix A exists if its determinant is

non-zero, or, equivalently if it has full rank,

i.e., when its rank is equal to the row or

column dimension N

a = [1 2 3]'; b = [4 5 6]';

A = [a, a+b, b]

A =

1 5 4

2 7 5

3 9 6

>> det(A)

ans =

0

>> rank(A)

ans =

2

>> doc inv

>> doc det

>> doc rank

>> doc cond

det(A) = 0

Invertibility, rank, determinants, condition number

Invertibility, rank, determinants, condition number

The larger the cond(A) the more ill-conditioned the linear

system, and the less reliable the solution.
The condition number of a matrix measures the sensitivity of the solution of

a system of linear equations to errors in the data

A = [1, 5, 4

2, 7 + 1e-8, 5

3, 9, 6];

>> cond(A)

ans =

3.3227e+009

A\[1; 2; 3]

ans =

1

0

0

A\[1.001; 2.0002; 3.000003]

ans =

30150.999185

-30150.000183

30150.000683

det(A) = -6.0000e-008

Determinant and inverse of a 2x2 matrix

Example:

Matrix Exponential Used widely in solving
linear dynamic systems

>> A = [1 2;3 4];

>> expm(A) % matrix exponential

ans =

51.9690 74.7366

112.1048 164.0738

>> exp(A) % element-wise exponential

ans =

2.7183 7.3891

20.0855 54.5982

>> doc expm

>> doc exp

Vector & Matrix Norms >> doc norm

L1, L2, and L norms of a vector

L1 norm

Euclidean, L2 norm

used as distance

measure between

two vectors or

matrices

L norm

x = [1, -4, 5, 3]; p = inf;

switch p

case 1

N = sum(abs(x)); % N = norm(x,1);

case 2

N = sqrt(sum(abs(x).^2)); % N = norm(x,2);

case inf

N = max(abs(x)); % N = norm(x,inf);

otherwise

N = sqrt(sum(abs(x).^2)); % N = norm(x,2);

end

useful for comparing two vectors or matrices

>> norm(a-b) % a,b vectors of same size

>> norm(A-B) % A,B matrices of same size

equivalent calculation using

the built-in function norm :

dot product

Euclidean distance

a

a b-

b

R4 = 

R1 =  R3 = 

R2

V = 5V3

V = 7.1 5V V = 2 15V

I2

I
3

I1

Electric Circuits

Kirchhoff’s

Voltage Law

Electric Circuits

A x = b

A = [25, -15, -10; -15, 30, -15; -10, -15, 30]

b = [-7.5; 15; -5]

A =

25 -15 -10

-15 30 -15

-10 -15 30

b =

-7.5000

15.0000

-5.0000

x = A\b

x =

0.5000

1.0000

0.5000

inv(A)

ans =

0.2571 0.2286 0.2000

0.2286 0.2476 0.2000

0.2000 0.2000 0.2000

inv(sym(A)) --> (1/105) * [27 24 21

24 26 21

21 21 21]

Iterative solutions of linear systems Ax=b

the only practical way to solve very large

linear systems is iteratively

Methods:

1. Jacobi method

2. Gauss-Seidel method

3. Relaxation methods

4. Conjugate Gradient method

5. Others

G. H. Golub and C. F. Van Loan, Matrix Computations, 3/e, JHU Press, 1996.

D. S. Watkins, Fundamentals of Matrix Computations, 2/e, Wiley, 2002.

L. N. Trefethen and D. Bau, Numerical Linear Algebra, SIAM, 1997.

A. Bjork, Numerical Methods for Least Squares Problems, SIAM, 1996.

turn it into a recursion

scalar example

illustrating the

Jacobi method

rearrange

rearrange

x(1)=0; % arbitrary

for k=1:19

x(k+1) = -0.5*x(k) + 6;

end

k=1:20; plot(k,x,'b.-');

>> [k; x]'

1 0.0000

2 6.0000

3 3.0000

4 4.5000

5 3.7500

6 4.1250

7 3.9375

8 4.0313

9 3.9844

10 4.0078

11 3.9961

12 4.0020

13 3.9990

14 4.0005

15 3.9998

16 4.0001

17 3.9999

18 4.0000

19 4.0000

20 4.0000

0 4 8 12 16 20
0

1

2

3

4

5

6

k

x
(k

)

tol=1e-10; x0=0;

x=x0; k=1;

while 1

xnew = -0.5*x + 6;

if abs(xnew-x)<=tol

break;

end

x = xnew;

k = k+1;

end

k, abs(x-4)

k =

37

ans =

5.8208e-011

tol=1e-10; x0=0;

x=x0; k=1;

xnew = -0.5*x+6;

while abs(xnew-x)>tol

x = xnew;

k = k+1;

xnew = -0.5*x + 6;

end

k, abs(x-4)

k =

37

ans =

5.8208e-011

forever

while loop

conventional

while loop

