
Introduction to Applied Scientific Computing using 

MATLAB

Mohsen Jenadeleh

In this lecture, slides from MIT, Rutgers and Waterloo  University are used  to form the lecture slides



Matrix Algebra

• dot product

• matrix-vector multiplication

• matrix-matrix multiplication

• matrix inverse

• solving linear systems

• least-squares solutions

• determinant, rank, condition number

• vector & matrix norms

• iterative solutions of linear systems

• examples

• electric circuits

• temperature distributions



Operators and Expressions

operation               element-wise    matrix-wise

addition                            +         +

subtraction                       - -

multiplication                  .*         *

division                           ./         /

left division                     .\ \

exponentiation                .^         ^

transpose w/o complex conjugation .'                  

transpose with complex conjugation '

>> help /         

>> help precedence
used in matrix 

algebra operations



>> A = [1 2; 3 4]

A =

1     2

3     4

>> [A, A.^2; A^2, A*A]        % form sub-blocks

ans =

1     2     1     4

3     4     9    16

7    10     7    10      % note A^2 = A*A

15    22    15    22

>> B = 10.^A; 

>> [B, log10(B)]

ans =

10         100           1           2

1000       10000           3           4



math

notations

MATLAB

notation

dot product

a, b must have the same 

dimension

The dot product is the basic operation in 

matrix-vector and matrix-matrix multiplications



math

notations

MATLAB

notation

dot product

for complex-valued vectors
complex-conjugate transpose,

or, hermitian conjugate of  a

for real-valued vectors, the

operations  ' and  .'

are equivalent



>> a = [1; 2; -3];  b = [4; -5; 2];

>> a'*b

ans =

-12

>> dot(a,b)        % built-in function

ans =              % same as sum(a.*b)

-12



matrix-vector multiplication

combine three dot product

operations into a single

matrix-vector multiplication



matrix-vector multiplication

combine three dot product

operations into a single

matrix-vector multiplication

A x = b



matrix-matrix multiplication

combine three matrix-vector 

multiplications into a single 

matrix-matrix multiplication



>> A = [4 1 2; 1 -1 1; 2 1 1]

A =

4     1     2

1    -1     1

2     1     1

>> B = [5 -1 -3; -4 3 1; -7 2 6]

B =

5    -1    -3

-4     3     1

-7     2     6

>> C = A*B

C =

2     3     1

2    -2     2

-1     3     1



C(i,j) is the dot product of i-th row of A with j-th column of B

note:

A*B  B*A



Rule of thumb:

(NxK)x(KxM) --> NxM

A is NxK

B is KxM

then, A*B is NxM



vector-vector multiplication

(1x3)x(3x1) --> 1x1 = scalar

row * column = scalar

(3x1)x(1x3) --> 3x3

column * row = matrix



vector-vector multiplication

>> [1, 2, 3] * [2 -3 -1]'

ans =

-7

>> [1, 2, 3]' * [2 -3 -1]

ans =

2    -3    -1

4    -6    -2

6    -9    -3

row x column

= scalar

column x row

= matrix



solving linear systems A x = b

Linear equations have a very large number of applications 

in engineering, science, social sciences, and economics

Linear Programming – Management Science

Computer Aided Design – aerodynamics of cars, planes

Signal Processing, Communications, Control, Radar, 

Sonar, Electromagnetics, Oil Exploration, 

Computer Vision, Pattern & Face Recognition

Chip Design – millions of transistors on a chip

Economic Models, Finance, Statistical Models, 

Data Mining, Social Models, Financial Engineering

Markov Models – Speech, Biology, Google Pagerank 

Scientific Computing – solving very large problems

the only practical 

way to solve very 

large systems is 

iteratively



solving linear systems

always use the backslash operator to 

solve a linear system, instead of inv(A)

matrix 

inverse



solving linear systems (using backslash)

>> A = [2 1 0; 1 5 -1; 1 -2 4];

>> b = [4 8 9]'; 

>> x = A\b         % solution of A*x = b

x =                % x = A^-1 * b

1              % x = inv(A) * b

2

3

>> norm(A*x-b)     % test - should be zero

ans = % or, of the order of eps

0



solving linear systems (using inv)

>> A = [2 1 0; 1 5 -1; 1 -2 4];

>> b = [4 8 9]';

>> inv(A)             % same as A^(-1)

ans =

0.5806   -0.1290   -0.0323

-0.1613    0.2581    0.0645

-0.2258    0.1613    0.2903                      

>> x = inv(A) * b     % but prefer backslash

x =                   % same as x = A^-1 * b

1.0000

2.0000

3.0000

>> norm(A*x-b)

ans =

1.8310e-015

>> inv(sym(A))

ans =

[ 18/31, -4/31, -1/31]

[ -5/31,  8/31,  2/31]

[ -7/31,  5/31,  9/31]



solving linear systems – back-slash and forward-slash

A of size NxN and invertible

X of size NxK

B of size NxK

AX = B -->  X = A\B = inv(A)*B

A of size NxN and invertible

X of size KxN

B of size KxN

XA = B  -->  X = B/A = B*inv(A)

equivalent

equivalent

A          X     =     B =AX B



solving linear systems – least-squares solutions

A of size NxM

x of size Mx1 column

b of size Nx1 column

x = A\b
x=A\b is a solution of  Ax=b

in a least-squares sense,

i.e., x minimizes the norm squared

of the error e = b – A*x:

(b-Ax)'*(b-Ax) = min

x may or may not be unique

depending on whether the linear

system Ax=b is over-determined,

under-determined, or whether A has

full rank or not

>> help \

>> help pinv

x = pinv(A)*b;

pseudo-inverse



least-squares solutions - summary

A = NxM matrix A' = MxN matrix

x = Mx1 column               A'*A = MxM matrix            

b = Nx1 column               A'*b = Mx1 column

Assuming full rank for A, we have the following cases:

1. N>M, overdetermined case, (most common in practice)

x = A\b = unique least-squares solution, same as

x = pinv(A)*b, and

x = (A'*A)^(-1) * (A'*b)

2. N<M, underdetermined case, (there are many solutions)

x=A\b, x=pinv(A)*b, are two possible solutions

3. N=M, square invertible case, x is unique

x = A\b is equivalent to x = A^(-1)*b

x = A\b is numerically

the most accurate method

Fundamental Theorem of

Linear Algebra – what is it?



least-squares solutions - example

% overdetermined

% full-rank example

A = [1 2; 3 4; 5 6]

b = [4, 3, 8]';

x = A\b

% x = pinv(A)*b

% x = (A'*A)\(A'*b)

x =

-1

2



least-squares solutions - example

inverse exists because A was

assumed to have full rank

minimized value of J

achieved  at  x = x_opt



least-squares solutions - example

A = [1 2; 3 4; 5 6]

b = [4, 3, 8]';

x_opt = (A'*A)\(A'*b)

J_min = b'*b - ...

b'*A*inv(A'*A)*A'*b

x_opt =

-1

2

J_min =

6



least-squares solutions - example



least-squares solutions - example

% we can also minimize J with fminsearch,

% i.e., the multivariable version of fminbnd

J = @(x) 35*(x(1)+1).^2 +...

88*(x(1)+1).*(x(2)-2)+...

56*(x(2)-2).^2 + 6;

x0 = [0,0]'; % arbitrary initial search point

[xmin,Jmin] = fminsearch(J,x0)

% xmin =          % Jmin = 6

%      -1.0000

%       2.0000



The inverse inv(A) of an NxN square 

matrix A exists if its determinant is 

non-zero, or, equivalently if it has full rank, 

i.e., when its rank is equal to the row or 

column dimension N

a = [1 2 3]'; b = [4 5 6]'; 

A = [a, a+b, b]

A =

1     5     4

2     7     5

3     9     6

>> det(A)

ans =

0

>> rank(A)

ans =

2

>> doc inv

>> doc det

>> doc rank

>> doc cond

det(A) = 0

Invertibility, rank, determinants, condition number



Invertibility, rank, determinants, condition number

The larger the cond(A) the more ill-conditioned the linear 

system, and the less reliable the solution.
The condition number of a matrix measures the sensitivity of the solution of 

a system of linear equations to errors in the data

A = [1,  5,         4

2,  7 + 1e-8,  5

3,  9,         6];

>> cond(A)

ans =

3.3227e+009

A\[1; 2; 3]

ans =

1

0

0

A\[1.001; 2.0002; 3.000003]

ans = 

30150.999185

-30150.000183

30150.000683

det(A) = -6.0000e-008



Determinant and inverse of a 2x2 matrix

Example:



Matrix Exponential Used widely in solving 
linear dynamic systems

>> A = [1 2;3 4];   

>> expm(A)    % matrix exponential

ans =

51.9690   74.7366

112.1048  164.0738

>> exp(A)     % element-wise exponential

ans =

2.7183    7.3891

20.0855   54.5982

>> doc expm

>> doc exp



Vector & Matrix Norms >> doc norm

L1, L2, and L norms of a vector

L1 norm

Euclidean, L2 norm

used as distance 

measure between 

two vectors or 

matrices 

L norm



x = [1, -4, 5, 3]; p = inf;

switch p

case 1

N = sum(abs(x));            % N = norm(x,1);

case 2 

N = sqrt(sum(abs(x).^2));   % N = norm(x,2);

case inf

N = max(abs(x));            % N = norm(x,inf);

otherwise

N = sqrt(sum(abs(x).^2));   % N = norm(x,2);

end

useful for comparing two vectors or matrices

>> norm(a-b) % a,b vectors of same size

>> norm(A-B) % A,B matrices of same size

equivalent calculation using

the built-in function norm :



dot product

Euclidean distance

a

a  b-

b



R4  = 

R1  =  R3  = 

R2

V  = 5V3

V  = 7.1 5V V  = 2 15V

I2

I
3

I1

Electric Circuits

Kirchhoff’s

Voltage Law



Electric Circuits



A x = b



A = [25, -15, -10; -15, 30, -15; -10, -15, 30]

b = [-7.5; 15; -5]

A =

25   -15   -10

-15    30   -15

-10   -15    30

b =

-7.5000

15.0000

-5.0000

x = A\b

x =

0.5000

1.0000

0.5000



inv(A)

ans =

0.2571    0.2286    0.2000

0.2286    0.2476    0.2000

0.2000    0.2000    0.2000

inv(sym(A)) --> (1/105) * [27   24   21

24   26   21

21   21   21]



Iterative solutions of linear systems Ax=b

the only practical way to solve very large 

linear systems is iteratively

Methods:

1. Jacobi method

2. Gauss-Seidel method

3. Relaxation methods

4. Conjugate Gradient method

5. Others

G. H. Golub and C. F. Van Loan, Matrix Computations, 3/e, JHU Press, 1996.

D. S. Watkins, Fundamentals of Matrix Computations, 2/e, Wiley, 2002.

L. N. Trefethen and D. Bau, Numerical Linear Algebra, SIAM, 1997.

A. Bjork, Numerical Methods for Least Squares Problems, SIAM, 1996.



turn it into a recursion

scalar example

illustrating the

Jacobi method

rearrange

rearrange



x(1)=0;      % arbitrary

for k=1:19 

x(k+1) = -0.5*x(k) + 6; 

end

k=1:20; plot(k,x,'b.-');

>> [k; x]'

1  0.0000

2  6.0000

3  3.0000

4  4.5000

5  3.7500

6  4.1250

7  3.9375

8  4.0313

9  3.9844

10  4.0078

11  3.9961

12  4.0020

13  3.9990

14  4.0005

15  3.9998

16  4.0001

17  3.9999

18  4.0000

19  4.0000

20  4.0000

0 4 8 12 16 20
0

1

2

3

4

5

6

k

x
(k

)



tol=1e-10; x0=0;       

x=x0; k=1;

while 1

xnew = -0.5*x + 6;

if abs(xnew-x)<=tol

break;

end

x = xnew;

k = k+1;

end

k, abs(x-4)

k =

37

ans =

5.8208e-011

tol=1e-10; x0=0;       

x=x0; k=1; 

xnew = -0.5*x+6;

while abs(xnew-x)>tol

x = xnew;

k = k+1;

xnew = -0.5*x + 6;

end

k, abs(x-4)

k =

37

ans =

5.8208e-011

forever

while loop

conventional

while loop


